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Translation-Invariant Propelinear Codes

1973, Delsarte [1].

1998, The only structures for the abelian group (2n) are of the
form Zα2 Z

β
4 , with α+ 2β = n [2].

Z2Z4 codes are translation-invariant propelinear codes.
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History of Additive Codes

Borges, Fernández and collaborators, [3]-[6].

2006, Z2Z4−Linear codes, Borges, Fernández, Pujol, Rifà,
Villanueva [3]
2010, Generator matrices and parity check matrices, Borges,
Fernández, Pujol, Rifà, Villanueva [4]
2011-..., Structure of MDS and self dual codes Bilal, Borges,
Dougherty, Fernández [5] and Borges, Dougherty, Fernández [6].
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History of Counting Problem

Codes over finite fields: Gaussian coefficients.

The number of subgroups of a given finite p-group:

1948, Delsarte [7], Djubjuk [8],
2000, Honold [9],
2004, Calugreanu [10] ,

2013, Codes over finite chain rings and finite principal ideal
rings: Dougherty and Saltürk [11].
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[3]-[6]

An additive Z2Z4 code C is a subgroup of Zα2 Z
β
4 ,

it is isomorphic to an abelian structure Zγ2Z
δ
4.

|C| = 2γ4δ.
The number of order two vectors is 2γ+δ.
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Example
Take C as a Z2Z4 code generated by

G =

(
1 0 0 1 0 2
1 0 1 1 2 1

)

C =

{
(0000|00), (1011|21), (0000|02), (1011|23),

(1001|02), (0010|23), (1001|00), (0010|21)

}
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[3]-[6]

For any vector v ∈ Zα2 × Zβ4 , v = (v1|v2),

v1 = (x1, . . . , xα) ∈ Zα2 and v2 = (y1, . . . , yβ) ∈ Zβ4 .

An extension of the usual Gray map Φ is defined as
Φ : Zα2 × Zβ4 −→ Zn

2, where n = α+ 2β
Φ(v1|v2) = (v1|φ(y1), . . . , φ(yβ)).
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[3]-[6]

X and Y denote the set of Z2 and Z4 coordinate positions,
respectively.

|X| = α and |Y| = β.
X corresponds to the first α coordinates and Y corresponds to the
last β coordinates.

Define CX and CY .
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[3]-[6]

Cb: The subcode of C which contains all order two codewords
κ: The dimension of (Cb)X .

Cb is a binary linear code.

When α = 0, then κ = 0.

We say that a Z2Z4 code C is of type (α, β; γ, δ;κ).
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Example
From the previous example, take C as a Z2Z4 code generated by

G =

(
1 0 0 1 0 2
1 0 1 1 2 1

)
α = 4, β = 2 since |X| = 4 and |Y| = 2.

The order of C is 2141, hence γ = 1 and δ = 1.

The code Cb is generated by (1001|02) and (0000|21). (Cb)X is
generated by (1001) and so κ = 1

C is of type (4, 2, 1, 1, 1).
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[3]-[6]

A Z2Z4 code of type (α, β; γ, δ;κ) is permutation equivalent to a
Z2Z4 code of type (α, β; γ, δ;κ) with standard generator matrix of the
form

G =

 Iκ Tb 2T2 0 0
0 0 2T1 2Iγ−κ 0
0 Sb Sq R Iδ

 ,

where Ik is the identity matrix; Tb,T1,T2,R, Sb are matrices over Z2
and Sq is a matrix over Z4.
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The parameters of a Z2Z4 code has the following inequalities:

α, β, γ, δ, κ ≥ 0, α+ β > 0

0 < γ + δ ≤ β + κ, κ ≤ min(α, γ).
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Example

G1 =


1 0 2 0 0
0 1 2 0 0
0 0 2 2 0
0 0 3 1 1

 G2 =


1 2 0 0 0 0
0 0 2 0 0 0
0 2 0 2 0 0
0 3 0 1 1 0
0 1 1 0 0 1


The code generated by G1 is of type (2, 3; 3, 1; 2) and the code
generated by G2 is of type (1, 5; 3, 2; 1).
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[3]-[6]

The inner product of two vectors u, v ∈ Zα2 Z
β
4 is defined as follows

[u, v] = 2(

α∑
i=1

uivi) +

α+β∑
j=α+1

ujvj ∈ Z4

The additive dual code of C is

C⊥ = {v ∈ Zα2 × Zβ4 | [u, v] = 0 for all u ∈ C}.
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[3]-[6]

If C is a Z2Z4 code with type (α, β; γ, δ;κ), then C⊥ is of type
(α, β; γ̄, δ̄; κ̄), where

γ̄ = α+ γ − 2κ,

δ̄ = β − γ − δ + κ,

κ̄ = α− κ.
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Example
Let C3 be a Z2Z4 code generated by

G3 =
(

1 0
)

Hence C3 is of type (1, 1, 1, 0, 1).
Then the dual code of C3 is the code C⊥3 generated by(

0 1
)

C⊥3 is of type (1, 1, 0, 1, 0).
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Definition ([12])
Let q 6= 1, k and n be positive numbers. q-ary Gaussian coefficients,[

n
k

]
q
, are defined as follows:

[
n
0

]
q

= 1,

[
n
k

]
q

=
(qn − 1)(qn−1 − 1) . . . (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) . . . (q− 1)
, k = 1, 2, . . .
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Theorem ([12])

The number of [n, k]-codes over Fq is given by the following Gaussian

coefficient:
[

n
k

]
q
.
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Example
The number of ternary linear codes of length 3 and dimension 1 is 13:[

3
2

]
3

=
(33 − 1)(33−1 − 1)

(32 − 1)(22−1 − 1)
= 13.

These linear codes are given by the following generator matrices:[
1 X Y

]
,
[

0 1 X
]
,
[

0 0 1
]

where X,Y ∈ Z3.
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Definition
A ring R is a local ring if it has a unique maximal ideal m. This
maximal ideal contains all non-units of the ring.

A principal ideal ring is a ring such that every ideal is generated
by a single element.

A principal ideal ring where the ideals are linearly ordered is
called a chain ring.
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Theorem
Every code over a finite chain ring has a generator matrix that is
permutation equivalent to a matrix of the following form

Ik0 A0,1 A0,2 A0,3 A0,e
γIk1 γA1,2 γA1,3 γA1,e

γ2Ik2 γ2A2,3 γ2A2,e
. . . . . .

. . . . . .
γe−1Ike−1 γe−1Ae−1,e


where Ai,j are matrices with elements in a finite chain ring and e is the
nilpotency index of γ.

A code with this generator matrix is said to be of type
(k0, k1, · · · , ke−1).

Dougherty - Salturk Counting Codes 31/66



Motivation
Additive Z2Z4 Codes

Counting codes
Summary

Counting Codes over Finite Fields
Counting Codes Over Finite Chain Rings
Counting Free Additive Codes
Counting Arbitrary Additive Codes

Theorem
Every code over a finite chain ring has a generator matrix that is
permutation equivalent to a matrix of the following form

Ik0 A0,1 A0,2 A0,3 A0,e
γIk1 γA1,2 γA1,3 γA1,e

γ2Ik2 γ2A2,3 γ2A2,e
. . . . . .

. . . . . .
γe−1Ike−1 γe−1Ae−1,e


where Ai,j are matrices with elements in a finite chain ring and e is the
nilpotency index of γ.

A code with this generator matrix is said to be of type
(k0, k1, · · · , ke−1).

Dougherty - Salturk Counting Codes 31/66



Motivation
Additive Z2Z4 Codes

Counting codes
Summary

Counting Codes over Finite Fields
Counting Codes Over Finite Chain Rings
Counting Free Additive Codes
Counting Arbitrary Additive Codes

Theorem ([11], Dougherty and Saltürk)
Let R be a chain ring with maximal ideal < γ >, where γ has
nilpotency e. Then number of distinct codes of type (k0, k1, · · · , ke−1)
is

q
∑e−2

j=0 nkj(e−(j+1)) ∏e−1
a=0

∏ka−1
i=0 (qn−q

∑a−1
b=0 kb qi)

q
∑e−2

j=0 (e−(j+1))k2
j +

∑e−2
a=0 {(e−(a+1))ka+1

∑a
t=0 kt}+

∑e−2
r=0 (

∑e−1
l=r+1 (e−l)krkl) ∏e−1

i=0 (qki−1)(qki−q)...(qki−qki−1)

.
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Theorem ([14], Wan)
Take Z4 as a finite chain ring. A linear code over Z4 is permutation
equivalent to a linear code with the following generator matrix(

Ik0 A11 A12
0 2Ik1 2A22

)
.

where Aij are matrices over Z4.

Corollary ([11], Dougherty and Saltürk)

The number of distinct linear codes of type (k0, k1) over Z4 is

2nk0
∏k0−1

i=0 (2n − 2i)
∏k1−1

j=0 (2n − 2k0+j)

2k2
0+2k0k1

∏k0−1
t=0 (2k0 − 2t)

∏k1−1
l=0 (2k0 − 2t)

.
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Example

The number of distinct linear codes of type (1, 3) and length 4 over
Z4 is 15 since

24(24 − 1)(24 − 2)(24 − 22)(24 − 23)

27(21 − 1)(23 − 1)(23 − 2)(24 − 22)
= 15.
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Example (cont.)
The generator matrices of those codes are as follows


1 X Y Z
0 2 0 0
0 0 2 0
0 0 0 2

 ,


2 0 0 0
0 1 X Y
0 0 2 0
0 0 0 2

 ,


2 0 0 0
0 2 0 0
0 0 1 X
0 0 0 2

 ,


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1


where X,Y,Z ∈ Z2.
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Basic Definitions

From the standard form, a free Z2Z4 code has a generator matrix of
the following form (

0 Sb Sq R Iδ
)

where Sb is a binary matrix, Sq and R are quaternary matrices and Iδ is
the identity matrix.
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Example
The codes C4 and C5 generated by the following matrices,
respectively, are free

G4 =
(

1 1 1
)

and G5 =

(
1 3 1 0
0 3 0 1

)
.
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Example (cont.)

C4 = {(0|00), (1|11), (0|22), (1|33)}

and

C5 =

{
(0|000), (1|310), (0|220), (1|130), (0|301), (1|211), (0|121),

(1|031), (0|202), (1|112), (0|022), (1|332), (0|103), (1|013),

(0|323), (1|233)

}
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Lemma ([13], Dougherty and Saltürk)
Vectors v1, v2, . . . , vk generate a free code if and only if
(v1)Y , (v2)Y , . . . , (vk)Y generate a quaternary free code.

A free code generated by s vectors has type (α, β, 0, s, κ).
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Example
The codes C4 and C5 generated by the following matrices are of types
(1, 2; 0, 1; 0) and (1, 3; 0, 2; 0) respectively:

G4 =
(

1 1 1
)

and G5 =

(
1 3 1 0
0 3 0 1

)
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The Number

Theorem ([13], Dougherty and Saltürk)

The number of free Z2Z4 codes generated by s vectors in Zα2 Z
β
4 is

2s(β+α−s)
[
β
s

]
2
.
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The Number

2s(β+α−s)
[
β
s

]
2

=
(4β − 2β)(4β − 2β2)(4β − 2β22) . . . (4β − 2β2s−1)2sα

(4s − 2s)(4s − 2s2)(4s − 2s22) . . . (4s − 2s2s−1)
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Example
The number of free Z2Z4 codes with α = β = 1 generated by 1

vector is 2 since 2(1+1−1)
[

1
1

]
2

= 2

These codes are generated by the following generator matrices:(
1 1

)
and

(
0 1

)
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Example
The number of free Z2Z4 codes with α = 1 and β = 2 generated by 1

vector is 12 since 2(2+1−1)
[

2
1

]
2

= 12.

These codes are generated by the following generator matrices:

(
1 0 1

)
,

(
1 1 1

)
,
(

1 2 1
)
,
(

1 3 1
)
,(

1 1 0
)

,
(

1 1 2
)
,
(

0 0 1
)
,
(

0 1 1
)
,(

0 2 1
)

,
(

0 3 1
)
,
(

0 1 0
)
,
(

0 1 2
)
.
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Recurrence relations, [13]

Define
{
α, β

s

}
to be the number of Z2Z4 codes of type

(α, β; 0, s;κ).

We have the following recurrence relations:

Theorem{
α, β

s

}
= 2α+β−s

{
α, β − 1

s− 1

}
+ 22s

{
α, β − 1

s

}
.

Theorem{
α, β

s

}
= 2α+2β−2s

{
α, β − 1

s− 1

}
+ 2s

{
α, β − 1

s

}
.
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Theorem ([13], Dougherty and Saltürk)

The number of distinct Z2Z4 codes of type (α, β; γ, δ;κ) is

Nα,β;γ,δ;κ = 2(α+β−γ−δ)δ+(β−δ−γ+κ)κ
[
β
δ

]
2

[
α
κ

]
2

[
β − δ
γ − κ

]
2
.
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G =

 Iκ Tb 2T2 0 0
0 0 2T1 2Iγ−κ 0
0 Sb Sq R Iδ
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Example

The number of Z2Z4 codes of type (1, 2; 2, 1; 1) is 3 since

N1,2;2,1;1 = 20
[

2
1

]
2

[
1
1

]
2

[
1
1

]
2

= 3.

These codes are generated by the following matrices:

 1 0 0
0 2 0
0 0 1

 ,

 1 0 0
0 2 0
0 1 1

 ,

 1 0 0
0 0 2
0 1 0

 .
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Example

The number of Z2Z4 codes of type (2, 2; 2, 0; 1) is 18 since

N2,2;2,0;1 = 21
[

2
0

]
2

[
2
1

]
2

[
2
1

]
2

= 18.

These codes are generated by the following matrices:

(
1 X Y 0
0 0 Z 2

)
,

(
1 X 0 T
0 0 2 0

)
,(

0 1 Y 0
0 0 Z 2

)
,

(
0 1 0 T
0 0 2 0

)
,

where X ∈ {0, 1} and Y,Z,T ∈ {0, 2}. Thus we obtain the 18 codes.
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Recurrence Relations

Define
{

α, β
γ, δ, κ

}
to be the number of Z2Z4 codes of type

(α, β; γ, δ;κ).

Then we have the following recurrence relations:
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Recurrence Relations, [13]

Theorem

{
α, β
γ, δ, κ

}
= 2β−γ−δ+κ

{
α− 1, β

γ − 1, δ, κ− 1

}
+2δ+κ

{
α− 1, β
γ, δ, κ

}
.

Theorem

{
α, β
γ, δ, κ

}
= 2α+β−γ−δ

{
α− 1, β

γ − 1, δ, κ− 1

}
+ 2δ

{
α− 1, β
γ, δ, κ

}
.
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Corollary ([13], Dougherty and Saltürk)

The number of Z2Z4 codes of type (α, β; γ, δ;κ) is equal to the
number of Z2Z4 codes of type
(α, β;α+ γ − 2κ, β − γ − δ + κ;α− κ).
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Example

Since the number of Z2Z4 codes of type (2, 2; 2, 0; 1) is 18 from the
previous example, we consider codes of type (2, 2; 2, 1; 1) where
γ̄ = 2 + 2− 2 = 2, δ̄ = 2− 2− 0 + 1 = 1, κ̄ = 2− 1 = 1.
The parameters above are the parameters of the dual codes.
Then we have the number of Z2Z4 codes of type (2, 2; 2, 1; 1) from
the formula which is the same as the number of Z2Z4 codes of type
(2, 2; 2, 0; 1).
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Decomposable codes

Lemma ([13], Dougherty and Saltürk)

A decomposable Z2Z4 code of type (α, β; γ, δ;κ) is the direct product
of a binary code of dimension κ in an α dimensional space and a
quaternary code in Zβ4 of quaternary type (δ, γ − κ).

Lemma ([13], Dougherty and Saltürk)

The number of decomposable codes of type (α, β; γ, δ;κ) is

(

[
α
κ

]
2
)(

2βk0
∏1

a=0
∏ka−1

i=0 (2β − 2
∑a−1

b=0 kb2i)

2k2
0+2k0k1

∏1
i=0(2ki − 1)(2ki − 2) . . . (2ki − 2ki−1)

),

where k0 = δ, k1 = γ − κ.
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Indecomposable codes

Theorem ([13], Dougherty and Saltürk)

The number of indecomposable codes of type (α, β; γ, δ;κ) is

2(α+β−2γ−δ)δ+βκ
[
β
δ

]
2

[
α
κ

]
2

[
β − δ
γ − κ

]
2

− (

[
α
κ

]
2
)(

2βk0
∏1

a=0
∏ka−1

i=0 (2β − 2
∑a−1

b=0 kb2i)

2k2
0+2k0k1

∏1
i=0(2ki − 1)(2ki − 2) . . . (2ki − 2ki−1)

),

where k0 = δ, k1 = γ − κ.
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Example

The number of Z2Z4 codes of type (2, 2; 2, 0; 1) is 18. The number of
decomposable codes of type (2, 2; 2, 0; 1) is 9. Because the number of

binary codes of dimension κ = 1 is

[
α
κ

]
2

=

[
2
1

]
2

= 3, and the

number of quaternary codes in Z2
4 of quaternary type

(δ, γ − κ) = (0, 1) is 3. Then the product, 3× 3 = 9, gives the
number of decomposable codes.
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Example (cont. example)
These codes are generated by the following matrices:

(
1 X 0 0
0 0 Y 2

)
,

(
1 X 0 0
0 0 2 0

)
,(

0 1 0 0
0 0 Y 2

)
,

(
0 1 0 0
0 0 2 0

)
where X ∈ {0, 1} and Y ∈ {0, 2}.
The remaining 9 codes are indecomposable ones.
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Summary

We count the number of additive codes of any types.
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Appendix

Regards

Thank you for your attention... ©
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