Counting Additive $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes

Esengül Saltürk

Department of Mathematics Yildiz Technical University, İstanbul
esengulsalturk @ gmail.com
joint work with Prof. Steven T. Dougherty
Department of Mathematics
The University of Scranton, Pennsylvania
prof.steven.dougherty@gmail.com

Noncommutative Rings and Their Applications, Université d’Artois, Lens-France, 1-4 July 2013

Outline

(1) Motivation

- The Problem
- Previous Work
(2) Additive $\mathbb{Z}_{2} \mathbb{Z}_{4}$ Codes
- Basic Definitions
- Generator Matrix
- Duality
(3) Counting codes
- Counting Codes over Finite Fields
- Counting Codes Over Finite Chain Rings
- Counting Free Additive Codes
- Counting Arbitrary Additive Codes

Outline

(1) Motivation

- The Problem
- Previous Work
(2) Additive $\mathbb{Z}_{2} \mathbb{Z}_{4}$ Codes
- Basic Definitions
- Generator Matrix
- Duality
(3.) Counting codes
- Counting Codes over Finite Fields
- Counting Codes Over Finite Chain Rings
- Counting Free Additive Codes
- Counting Arbitrary Additive Codes

The Problem

TO COUNT ADDITIVE CODES

What we've done

- Free additive $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes
- Arbitrary additive $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes
- Decomposable codes

Outline

(1) Motivation

- The Problem
- Previous Work
(2) Additive $\mathbb{Z}_{2} \mathbb{Z}_{4}$ Codes
- Basic Definitions
- Generator Matrix
- Duality
(3) Counting codes
- Counting Codes over Finite Fields
- Counting Codes Over Finite Chain Rings
- Counting Free Additive Codes
- Counting Arbitrary Additive Codes

Translation-Invariant Propelinear Codes

- 1973, Delsarte [1].
- 1998, The only structures for the abelian group $\left(2^{n}\right)$ are of the form $\mathbb{Z}_{2}^{\alpha} \mathbb{Z}_{4}^{\beta}$, with $\alpha+2 \beta=n$ [2].
- $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes are translation-invariant propelinear codes.

History of Additive Codes

- Borges, Fernández and collaborators, [3]-[6].
- $2006, \mathbb{Z}_{2} \mathbb{Z}_{4}$-Linear codes, Borges, Fernández, Pujol, Rifà, Villanueva [3]
- 2010, Generator matrices and parity check matrices, Borges, Fernández, Pujol, Rifà, Villanueva [4]
- 2011-..., Structure of MDS and self dual codes Bilal, Borges, Dougherty, Fernández [5] and Borges, Dougherty, Fernández [6].

History of Counting Problem

- Codes over finite fields: Gaussian coefficients.
- The number of subgroups of a given finite p-group:
- 1948, Delsarte [7], Djubjuk [8],
- 2000, Honold [9],
- 2004, Calugreanu [10],
- 2013, Codes over finite chain rings and finite principal ideal rings: Dougherty and Saltürk [11].

Outline

(1) Motivation

- The Problem
- Previous Work
(2) Additive $\mathbb{Z}_{2} \mathbb{Z}_{4}$ Codes
- Basic Definitions
- Generator Matrix
- Duality
(3. Counting codes
- Counting Codes over Finite Fields
- Counting Codes Over Finite Chain Rings
- Counting Free Additive Codes
- Counting Arbitrary Additive Codes

[3]-[6]

- An additive $\mathbb{Z}_{2} \mathbb{Z}_{4}$ code C is a subgroup of $\mathbb{Z}_{2}^{\alpha} \mathbb{Z}_{4}^{\beta}$, it is isomorphic to an abelian structure $\mathbb{Z}_{2}^{\gamma} \mathbb{Z}_{4}^{\delta}$.
- $|C|=2^{\gamma} 4^{\delta}$.
- The number of order two vectors is $2^{\gamma+\delta}$.

Example

Take C as a $\mathbb{Z}_{2} \mathbb{Z}_{4}$ code generated by

$$
\begin{gathered}
G=\left(\begin{array}{llll|ll}
1 & 0 & 0 & 1 & 0 & 2 \\
\hline 1 & 0 & 1 & 1 & 2 & 1
\end{array}\right) \\
C=\{(0000 \mid 00),(1011 \mid 21),(0000 \mid 02),(1011 \mid 23), \\
\\
\\
\\
(1001 \mid 02),(0010 \mid 23),(1001 \mid 00),(0010 \mid 21)\}
\end{gathered}
$$

[3]-[6]

- For any vector $\mathbf{v} \in \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}, \mathbf{v}=\left(\mathbf{v}_{1} \mid \mathbf{v}_{2}\right)$,

$$
\mathbf{v}_{1}=\left(x_{1}, \ldots, x_{\alpha}\right) \in \mathbb{Z}_{2}^{\alpha} \text { and } \mathbf{v}_{2}=\left(y_{1}, \ldots, y_{\beta}\right) \in \mathbb{Z}_{4}^{\beta}
$$

- An extension of the usual Gray map Φ is defined as
$\Phi: \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta} \longrightarrow \mathbb{Z}_{2}^{n}$, where $n=\alpha+2 \beta$
$\Phi\left(\mathbf{v}_{1} \mid \mathbf{v}_{2}\right)=\left(\mathbf{v}_{1} \mid \phi\left(y_{1}\right), \ldots, \phi\left(y_{\beta}\right)\right)$.

[3]-[6]

- X and Y denote the set of \mathbb{Z}_{2} and \mathbb{Z}_{4} coordinate positions, respectively.
- $|X|=\alpha$ and $|Y|=\beta$.
- X corresponds to the first α coordinates and Y corresponds to the last β coordinates.
- Define C_{X} and C_{Y}.

[3]-[6]

- C_{b} : The subcode of C which contains all order two codewords κ : The dimension of $\left(C_{b}\right)_{X}$.
- C_{b} is a binary linear code.
- When $\alpha=0$, then $\kappa=0$.
- We say that a $\mathbb{Z}_{2} \mathbb{Z}_{4}$ code C is of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$.

Example

From the previous example, take C as a $\mathbb{Z}_{2} \mathbb{Z}_{4}$ code generated by

$$
G=\left(\begin{array}{llll|ll}
1 & 0 & 0 & 1 & 0 & 2 \\
\hline 1 & 0 & 1 & 1 & 2 & 1
\end{array}\right)
$$

- $\alpha=4, \beta=2$ since $|X|=4$ and $|Y|=2$.
- The order of C is $2^{1} 4^{1}$, hence $\gamma=1$ and $\delta=1$.
- The code C_{b} is generated by $(1001 \mid 02)$ and $(0000 \mid 21) .\left(C_{b}\right)_{X}$ is generated by (1001) and so $\kappa=1$
- C is of type $(4,2,1,1,1)$.

Outline

(1) Motivation

- The Problem
- Previous Work
(2) Additive $\mathbb{Z}_{2} \mathbb{Z}_{4}$ Codes
- Basic Definitions
- Generator Matrix
- Duality
(3) Counting codes
- Counting Codes over Finite Fields
- Counting Codes Over Finite Chain Rings
- Counting Free Additive Codes
- Counting Arbitrary Additive Codes

[3]-[6]

A $\mathbb{Z}_{2} \mathbb{Z}_{4}$ code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ is permutation equivalent to a $\mathbb{Z}_{2} \mathbb{Z}_{4}$ code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ with standard generator matrix of the form

$$
G=\left(\begin{array}{cc|ccc}
I_{\kappa} & T_{b} & 2 T_{2} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & 2 T_{1} & 2 I_{\gamma-\kappa} & \mathbf{0} \\
\hline \mathbf{0} & S_{b} & S_{q} & R & I_{\delta}
\end{array}\right)
$$

where I_{k} is the identity matrix; $T_{b}, T_{1}, T_{2}, R, S_{b}$ are matrices over \mathbb{Z}_{2} and S_{q} is a matrix over \mathbb{Z}_{4}.

[3]-[6]

The parameters of a $\mathbb{Z}_{2} \mathbb{Z}_{4}$ code has the following inequalities:

$$
\begin{aligned}
\alpha, \beta, \gamma, \delta, \kappa & \geq 0, \quad \alpha+\beta>0 \\
0<\gamma+\delta & \leq \beta+\kappa, \quad \kappa \leq \min (\alpha, \gamma)
\end{aligned}
$$

Example

$$
G_{1}=\left(\begin{array}{cc|ccc}
\mathbf{1} & \mathbf{0} & 2 & 0 & 0 \\
\mathbf{0} & \mathbf{1} & 2 & 0 & 0 \\
0 & 0 & 2 & \mathbf{2} & 0 \\
\hline 0 & 0 & 3 & 1 & \mathbf{1}
\end{array}\right) \quad G_{2}=\left(\begin{array}{c|ccccc}
\mathbf{1} & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & \mathbf{2} & \mathbf{0} & 0 & 0 \\
0 & 2 & \mathbf{0} & \mathbf{2} & 0 & 0 \\
\hline 0 & 3 & 0 & 1 & \mathbf{1} & \mathbf{0} \\
0 & 1 & 1 & 0 & \mathbf{0} & \mathbf{1}
\end{array}\right)
$$

The code generated by G_{1} is of type $(2,3 ; 3,1 ; 2)$ and the code generated by G_{2} is of type $(1,5 ; 3,2 ; 1)$.

Outline

(1) Motivation

- The Problem
- Previous Work
(2) Additive $\mathbb{Z}_{2} \mathbb{Z}_{4}$ Codes
- Basic Definitions
- Generator Matrix
- Duality
(3) Counting codes
- Counting Codes over Finite Fields
- Counting Codes Over Finite Chain Rings
- Counting Free Additive Codes
- Counting Arbitrary Additive Codes

[3]-[6]

The inner product of two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{Z}_{2}^{\alpha} \mathbb{Z}_{4}^{\beta}$ is defined as follows

$$
[\mathbf{u}, \mathbf{v}]=2\left(\sum_{i=1}^{\alpha} u_{i} v_{i}\right)+\sum_{j=\alpha+1}^{\alpha+\beta} u_{j} v_{j} \in \mathbb{Z}_{4}
$$

The additive dual code of C is

$$
C^{\perp}=\left\{\mathbf{v} \in \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta} \mid[\mathbf{u}, \mathbf{v}]=0 \text { for all } \mathbf{u} \in C\right\}
$$

[3]-[6]

If C is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$ code with type $(\alpha, \beta ; \gamma, \delta ; \kappa)$, then C^{\perp} is of type $(\alpha, \beta ; \bar{\gamma}, \bar{\delta} ; \bar{\kappa})$, where

$$
\begin{aligned}
\bar{\gamma} & =\alpha+\gamma-2 \kappa \\
\bar{\delta} & =\beta-\gamma-\delta+\kappa \\
\bar{\kappa} & =\alpha-\kappa
\end{aligned}
$$

Example

Let C_{3} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$ code generated by

$$
G_{3}=\left(\begin{array}{l|l}
1 & 0
\end{array}\right)
$$

Hence C_{3} is of type $(1,1,1,0,1)$.
Then the dual code of C_{3} is the code C_{3}^{\perp} generated by

C_{3}^{\perp} is of type ($1,1,0,1,0$).

Example

Let C_{3} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$ code generated by

$$
G_{3}=\left(\begin{array}{l|l}
1 & 0
\end{array}\right)
$$

Hence C_{3} is of type $(1,1,1,0,1)$.
Then the dual code of C_{3} is the code C_{3}^{\perp} generated by

$$
\left(\begin{array}{l|l}
\hline 0 & 1
\end{array}\right)
$$

C_{3}^{\perp} is of type $(1,1,0,1,0)$.

Outline

(1) Motivation

- The Problem
- Previous Work
(2) Additive $\mathbb{Z}_{2} \mathbb{Z}_{4}$ Codes
- Basic Definitions
- Generator Matrix
- Duality
(3) Counting codes
- Counting Codes over Finite Fields
- Counting Codes Over Finite Chain Rings
- Counting Free Additive Codes
- Counting Arbitrary Additive Codes

Definition ([12])

Let $q \neq 1, k$ and n be positive numbers. q-ary Gaussian coefficients, $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$, are defined as follows:

$$
\begin{gathered}
{\left[\begin{array}{l}
n \\
0
\end{array}\right]_{q}=1,} \\
{\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right) \ldots\left(q^{n-k+1}-1\right)}{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \ldots(q-1)}, \quad k=1,2, \ldots}
\end{gathered}
$$

Theorem ([12])

The number of $[n, k]$-codes over \mathbb{F}_{q} is given by the following Gaussian coefficient: $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$.

Example

The number of ternary linear codes of length 3 and dimension 1 is 13 :

$$
\left[\begin{array}{l}
3 \\
2
\end{array}\right]_{3}=\frac{\left(3^{3}-1\right)\left(3^{3-1}-1\right)}{\left(3^{2}-1\right)\left(2^{2-1}-1\right)}=13
$$

These linear codes are given by the following generator matrices:
where $X, Y \in \mathbb{Z}_{3}$.

Example

The number of ternary linear codes of length 3 and dimension 1 is 13 :

$$
\left[\begin{array}{l}
3 \\
2
\end{array}\right]_{3}=\frac{\left(3^{3}-1\right)\left(3^{3-1}-1\right)}{\left(3^{2}-1\right)\left(2^{2-1}-1\right)}=13
$$

These linear codes are given by the following generator matrices:

$$
\left[\begin{array}{lll}
1 & X & Y
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & X
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]
$$

where $X, Y \in \mathbb{Z}_{3}$.

Outline

Motivation

- The Problem
- Previous Work
(2) Additive $\mathbb{Z}_{2} \mathbb{Z}_{4}$ Codes
- Basic Definitions
- Generator Matrix
- Duality
(3) Counting codes
- Counting Codes over Finite Fields
- Counting Codes Over Finite Chain Rings
- Counting Free Additive Codes
- Counting Arbitrary Additive Codes

Definition

- A ring R is a local ring if it has a unique maximal ideal m . This maximal ideal contains all non-units of the ring.
- A principal ideal ring is a ring such that every ideal is generated by a single element.
- A principal ideal ring where the ideals are linearly ordered is called a chain ring.

Theorem

Every code over a finite chain ring has a generator matrix that is permutation equivalent to a matrix of the following form

$$
\left(\begin{array}{cccccc}
I_{k_{0}} & A_{0,1} & A_{0,2} & A_{0,3} & & A_{0, e} \\
& \gamma I_{k_{1}} & \gamma A_{1,2} & \gamma A_{1,3} & & \gamma A_{1, e} \\
& & \gamma^{2} I_{k_{2}} & \gamma^{2} A_{2,3} & & \gamma^{2} A_{2, e} \\
& & \ddots & \ddots & & \\
& & & \ddots & \ddots & \\
& & & & \gamma^{e-1} I_{k_{e-1}} & \gamma^{e-1} A_{e-1, e}
\end{array}\right)
$$

where $A_{i, j}$ are matrices with elements in a finite chain ring and e is the nilpotency index of γ.

A code with this generator matrix is said to be of type

Theorem

Every code over a finite chain ring has a generator matrix that is permutation equivalent to a matrix of the following form

$$
\left(\begin{array}{cccccc}
I_{k_{0}} & A_{0,1} & A_{0,2} & A_{0,3} & & A_{0, e} \\
& \gamma I_{k_{1}} & \gamma A_{1,2} & \gamma A_{1,3} & & \gamma A_{1, e} \\
& & \gamma^{2} I_{k_{2}} & \gamma^{2} A_{2,3} & & \gamma^{2} A_{2, e} \\
& & \ddots & \ddots & & \\
& & & \ddots & \ddots & \\
& & & & \gamma^{e-1} I_{k_{e-1}} & \gamma^{e-1} A_{e-1, e}
\end{array}\right)
$$

where $A_{i, j}$ are matrices with elements in a finite chain ring and e is the nilpotency index of γ.

A code with this generator matrix is said to be of type $\left(k_{0}, k_{1}, \cdots, k_{e-1}\right)$.

Theorem ([11], Dougherty and Saltürk)

Let R be a chain ring with maximal ideal $\langle\gamma\rangle$, where γ has nilpotency e. Then number of distinct codes of type $\left(k_{0}, k_{1}, \cdots, k_{e-1}\right)$ is
$\frac{q^{\sum_{j=0}^{e-2} n k_{j}(e-(j+1))} \prod_{a=0}^{e-1} \prod_{i=0}^{k_{a}-1}\left(q^{n}-q^{\sum_{b=0}^{a-1} k_{b}} q^{i}\right)}{q^{\sum_{j=0}^{e-2}(e-(j+1)) k_{j}^{2}+\sum_{a=0}^{e-2}\left\{(e-(a+1)) k_{a+1} \sum_{t=0}^{a} k_{t}\right\}+\sum_{r=0}^{e-2}\left(\sum_{l=r+1}^{e-1}(e-l) k_{r} k_{l}\right)} \prod_{i=0}^{e-1}\left(q^{k_{i}}-1\right)\left(q^{k_{i}}-q\right) \ldots\left(q^{k_{i}}-q^{k_{i}-1}\right)}$.

Theorem ([14], Wan)

Take \mathbb{Z}_{4} as a finite chain ring. A linear code over \mathbb{Z}_{4} is permutation equivalent to a linear code with the following generator matrix

$$
\left(\begin{array}{ccc}
I_{k_{0}} & A_{11} & A_{12} \\
0 & 2 I_{k_{1}} & 2 A_{22}
\end{array}\right)
$$

where $A_{i j}$ are matrices over \mathbb{Z}_{4}.

Corollary ([11], Dougherty and Saltürk)
The number of distinct linear codes of type $\left(k_{0}, k_{1}\right)$ over \mathbb{Z}_{4} is

Theorem ([14], Wan)

Take \mathbb{Z}_{4} as a finite chain ring. A linear code over \mathbb{Z}_{4} is permutation equivalent to a linear code with the following generator matrix

$$
\left(\begin{array}{ccc}
I_{k_{0}} & A_{11} & A_{12} \\
0 & 2 I_{k_{1}} & 2 A_{22}
\end{array}\right)
$$

where $A_{i j}$ are matrices over \mathbb{Z}_{4}.

Corollary ([11], Dougherty and Saltürk)

The number of distinct linear codes of type $\left(k_{0}, k_{1}\right)$ over \mathbb{Z}_{4} is

$$
\frac{2^{n k_{0}} \prod_{i=0}^{k_{0}-1}\left(2^{n}-2^{i}\right) \prod_{j=0}^{k_{1}-1}\left(2^{n}-2^{k_{0}+j}\right)}{2^{k_{0}^{2}+2 k_{0} k_{1}} \prod_{t=0}^{k_{0}-1}\left(2^{k_{0}}-2^{t}\right) \prod_{l=0}^{k_{1}-1}\left(2^{k_{0}}-2^{t}\right)}
$$

Example

The number of distinct linear codes of type $(1,3)$ and length 4 over \mathbb{Z}_{4} is 15 since

$$
\frac{2^{4}\left(2^{4}-1\right)\left(2^{4}-2\right)\left(2^{4}-2^{2}\right)\left(2^{4}-2^{3}\right)}{2^{7}\left(2^{1}-1\right)\left(2^{3}-1\right)\left(2^{3}-2\right)\left(2^{4}-2^{2}\right)}=15 .
$$

Example (cont.)

The generator matrices of those codes are as follows

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & X & Y & Z \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right],\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 1 & X & Y \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right],} \\
& {\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & X \\
0 & 0 & 0 & 2
\end{array}\right],\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

where $X, Y, Z \in \mathbb{Z}_{2}$.

Outline

(1) Motivation

- The Problem
- Previous Work
(2) Additive $\mathbb{Z}_{2} \mathbb{Z}_{4}$ Codes
- Basic Definitions
- Generator Matrix
- Duality
(3) Counting codes
- Counting Codes over Finite Fields
- Counting Codes Over Finite Chain Rings
- Counting Free Additive Codes
- Counting Arbitrary Additive Codes

Basic Definitions

From the standard form, a free $\mathbb{Z}_{2} \mathbb{Z}_{4}$ code has a generator matrix of the following form

$$
\left(\begin{array}{ll|lll}
\hline 0 & S_{b} & S_{q} & R & I_{\delta}
\end{array}\right)
$$

where S_{b} is a binary matrix, S_{q} and R are quaternary matrices and I_{δ} is the identity matrix.

Example

The codes C_{4} and C_{5} generated by the following matrices, respectively, are free

$$
G_{4}=\left(\begin{array}{l|ll}
\overline{1} & 1 & 1
\end{array}\right) \quad \text { and } \quad G_{5}=\left(\begin{array}{l|lll}
\hline 1 & 3 & 1 & 0 \\
0 & 3 & 0 & 1
\end{array}\right) .
$$

Example (cont.)

$$
C_{4}=\{(0 \mid 00),(1 \mid 11),(0 \mid 22),(1 \mid 33)\}
$$

and

$$
\begin{array}{r}
C_{5}=\{(0 \mid 000),(1 \mid 310),(0 \mid 220),(1 \mid 130),(0 \mid 301),(1 \mid 211),(0 \mid 121), \\
(1 \mid 031),(0 \mid 202),(1 \mid 112),(0 \mid 022),(1 \mid 332),(0 \mid 103),(1 \mid 013), \\
(0 \mid 323),(1 \mid 233)\}
\end{array}
$$

Lemma ([13], Dougherty and Saltürk)

Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ generate a free code if and only if $\left(\mathbf{v}_{1}\right)_{Y},\left(\mathbf{v}_{2}\right)_{Y}, \ldots,\left(\mathbf{v}_{k}\right)_{Y}$ generate a quaternary free code. A free code generated by s vectors has type $(\alpha, \beta, 0, s, \kappa)$.

Lemma ([13], Dougherty and Saltürk)

Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ generate a free code if and only if $\left(\mathbf{v}_{1}\right)_{Y},\left(\mathbf{v}_{2}\right)_{Y}, \ldots,\left(\mathbf{v}_{k}\right)_{Y}$ generate a quaternary free code.

A free code generated by s vectors has type $(\alpha, \beta, 0, s, \kappa)$.

Example

The codes C_{4} and C_{5} generated by the following matrices are of types $(1,2 ; 0,1 ; 0)$ and $(1,3 ; 0,2 ; 0)$ respectively:

$$
G_{4}=\left(\begin{array}{l|ll}
1 & 1 & 1
\end{array}\right) \quad \text { and } \quad G_{5}=\left(\begin{array}{l|lll}
\hline 1 & 3 & 1 & 0 \\
0 & 3 & 0 & 1
\end{array}\right)
$$

The Number

Theorem ([13], Dougherty and Saltürk)

The number of free $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes generated by s vectors in $\mathbb{Z}_{2}^{\alpha} \mathbb{Z}_{4}^{\beta}$ is

$$
2^{s(\beta+\alpha-s)}\left[\begin{array}{c}
\beta \\
s
\end{array}\right]_{2}
$$

The Number

$$
2^{s(\beta+\alpha-s)}\left[\begin{array}{c}
\beta \\
s
\end{array}\right]_{2}=\frac{\left(4^{\beta}-2^{\beta}\right)\left(4^{\beta}-2^{\beta} 2\right)\left(4^{\beta}-2^{\beta} 2^{2}\right) \ldots\left(4^{\beta}-2^{\beta} 2^{s-1}\right) 2^{s \alpha}}{\left(4^{s}-2^{s}\right)\left(4^{s}-2^{s} 2\right)\left(4^{s}-2^{s} 2^{2}\right) \ldots\left(4^{s}-2^{s 2^{s-1}}\right)}
$$

Example

The number of free $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes with $\alpha=\beta=1$ generated by 1
vector is 2 since $2^{(1+1-1)}\left[\begin{array}{l}1 \\ 1\end{array}\right]_{2}=2$
These codes are generated by the following generator matrices:

Example

The number of free $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes with $\alpha=\beta=1$ generated by 1 vector is 2 since $2^{(1+1-1)}\left[\begin{array}{l}1 \\ 1\end{array}\right]_{2}=2$

These codes are generated by the following generator matrices:

$$
\left(\begin{array}{l|l}
1 & 1
\end{array}\right) \text { and } \quad\left(\begin{array}{l|l}
0 & 1
\end{array}\right)
$$

Example

The number of free $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes with $\alpha=1$ and $\beta=2$ generated by 1 vector is 12 since $2^{(2+1-1)}\left[\begin{array}{l}2 \\ 1\end{array}\right]_{2}=12$.

These codes are generated by the following generator matrices:

Example

The number of free $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes with $\alpha=1$ and $\beta=2$ generated by 1 vector is 12 since $2^{(2+1-1)}\left[\begin{array}{l}2 \\ 1\end{array}\right]_{2}=12$.

These codes are generated by the following generator matrices:

$$
\begin{aligned}
& \begin{array}{l|ll}
\hline 1 & 0 & 1 \\
\hline
\end{array}, \\
& \begin{array}{l|ll}
\hline 1 & 1 & 1 \\
\hline
\end{array}, \\
& \left.\begin{array}{l|ll}
\hline 1 & 2 & 1 \\
\hline
\end{array}\right), \\
& \begin{array}{l|ll}
\hline 1 & 3 & 1 \\
\hline
\end{array}, \\
& \left(\begin{array}{l|ll}
\hline 1 & 1 & 0
\end{array}\right), \\
& \left(\begin{array}{l|ll}
1 & 1 & 2 \\
\hline & \\
\hline 0 & 3 & 1 \\
\hline
\end{array},\right. \\
& \left(\begin{array}{l|ll}
0 & 0 & 1
\end{array}\right), \\
& \left.\begin{array}{l|ll}
\hline 0 & 1 & 1
\end{array}\right), \\
& \left(\begin{array}{l|ll}
0 & 2 & 1
\end{array}\right), \\
& \left.\begin{array}{l|ll}
\hline 0 & 3 & 1
\end{array}\right), \\
& \left(\begin{array}{l|ll}
0 & 1 & 0
\end{array}\right), \\
& \begin{array}{l|ll}
\hline 0 & 1 & 2
\end{array} \text {. }
\end{aligned}
$$

Recurrence relations, [13]

Define $\left\{\begin{array}{c}\alpha, \beta \\ s\end{array}\right\}$ to be the number of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type $(\alpha, \beta ; 0, s ; \kappa)$.

We have the following recurrence relations:

[^0]

Recurrence relations, [13]

Define $\left\{\begin{array}{c}\alpha, \beta \\ s\end{array}\right\}$ to be the number of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type $(\alpha, \beta ; 0, s ; \kappa)$.

We have the following recurrence relations:

Recurrence relations, [13]

Define $\left\{\begin{array}{c}\alpha, \beta \\ s\end{array}\right\}$ to be the number of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type $(\alpha, \beta ; 0, s ; \kappa)$.

We have the following recurrence relations:

Theorem

$$
\left\{\begin{array}{c}
\alpha, \beta \\
s
\end{array}\right\}=2^{\alpha+\beta-s}\left\{\begin{array}{c}
\alpha, \beta-1 \\
s-1
\end{array}\right\}+2^{2 s}\left\{\begin{array}{c}
\alpha, \beta-1 \\
s
\end{array}\right\} .
$$

Recurrence relations, [13]

Define $\left\{\begin{array}{c}\alpha, \beta \\ s\end{array}\right\}$ to be the number of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type $(\alpha, \beta ; 0, s ; \kappa)$.

We have the following recurrence relations:

Theorem

$$
\left\{\begin{array}{c}
\alpha, \beta \\
s
\end{array}\right\}=2^{\alpha+\beta-s}\left\{\begin{array}{c}
\alpha, \beta-1 \\
s-1
\end{array}\right\}+2^{2 s}\left\{\begin{array}{c}
\alpha, \beta-1 \\
s
\end{array}\right\} .
$$

Theorem

$$
\left\{\begin{array}{c}
\alpha, \beta \\
s
\end{array}\right\}=2^{\alpha+2 \beta-2 s}\left\{\begin{array}{c}
\alpha, \beta-1 \\
s-1
\end{array}\right\}+2^{s}\left\{\begin{array}{c}
\alpha, \beta-1 \\
s
\end{array}\right\} .
$$

Outline

(1) Motivation

- The Problem
- Previous Work
(2) Additive $\mathbb{Z}_{2} \mathbb{Z}_{4}$ Codes
- Basic Definitions
- Generator Matrix
- Duality
(3) Counting codes
- Counting Codes over Finite Fields
- Counting Codes Over Finite Chain Rings
- Counting Free Additive Codes
- Counting Arbitrary Additive Codes

Theorem ([13], Dougherty and Saltürk)

The number of distinct $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ is

$$
N_{\alpha, \beta ; \gamma, \delta ; \kappa}=2^{(\alpha+\beta-\gamma-\delta) \delta+(\beta-\delta-\gamma+\kappa) \kappa}\left[\begin{array}{l}
\beta \\
\delta
\end{array}\right]_{2}\left[\begin{array}{l}
\alpha \\
\kappa
\end{array}\right]_{2}\left[\begin{array}{l}
\beta-\delta \\
\gamma-\kappa
\end{array}\right]_{2} .
$$

$$
G=\left(\begin{array}{cc|ccc}
I_{\kappa} & T_{b} & 2 T_{2} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & 2 T_{1} & 2 I_{\gamma-\kappa} & \mathbf{0} \\
\hline \mathbf{0} & S_{b} & S_{q} & R & I_{\delta}
\end{array}\right)
$$

Example

The number of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type $(1,2 ; 2,1 ; 1)$ is 3 since $N_{1,2 ; 2,1 ; 1}=2^{0}\left[\begin{array}{l}2 \\ 1\end{array}\right]_{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]_{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]_{2}=3$.

These codes are generated by the following matrices:

Example

The number of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type $(1,2 ; 2,1 ; 1)$ is 3 since $N_{1,2 ; 2,1 ; 1}=2^{0}\left[\begin{array}{l}2 \\ 1\end{array}\right]_{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]_{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]_{2}=3$.

These codes are generated by the following matrices:

$$
\left(\begin{array}{l|ll}
1 & 0 & 0 \\
0 & 2 & 0 \\
\hline 0 & 0 & 1
\end{array}\right),\left(\begin{array}{c|cc}
1 & 0 & 0 \\
0 & 2 & 0 \\
\hline 0 & 1 & 1
\end{array}\right),\left(\begin{array}{c|cc}
1 & 0 & 0 \\
0 & 0 & 2 \\
\hline 0 & 1 & 0
\end{array}\right) .
$$

Example

The number of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type $(2,2 ; 2,0 ; 1)$ is 18 since
$N_{2,2 ; 2,0 ; 1}=2^{1}\left[\begin{array}{l}2 \\ 0\end{array}\right]_{2}\left[\begin{array}{l}2 \\ 1\end{array}\right]_{2}\left[\begin{array}{l}2 \\ 1\end{array}\right]_{2}=18$.
These codes are generated by the following matrices:

where $X \in\{0,1\}$ and $Y, Z, T \in\{0,2\}$. Thus we obtain the 18 codes.

Example

The number of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type $(2,2 ; 2,0 ; 1)$ is 18 since
$N_{2,2 ; 2,0 ; 1}=2^{1}\left[\begin{array}{l}2 \\ 0\end{array}\right]_{2}\left[\begin{array}{l}2 \\ 1\end{array}\right]_{2}\left[\begin{array}{l}2 \\ 1\end{array}\right]_{2}=18$.
These codes are generated by the following matrices:

$$
\frac{\left(\begin{array}{cc|cc}
1 & X & Y & 0 \\
0 & 0 & Z & 2
\end{array}\right)}{\left(\begin{array}{ll|ll}
0 & 1 & Y & 0 \\
0 & 0 & Z & 2
\end{array}\right),}, \underline{\left(\begin{array}{ll|ll}
1 & X & 0 & T \\
0 & 0 & 2 & 0
\end{array}\right)},
$$

where $X \in\{0,1\}$ and $Y, Z, T \in\{0,2\}$. Thus we obtain the 18 codes.

Recurrence Relations

Define $\left\{\begin{array}{c}\alpha, \beta \\ \gamma, \delta, \kappa\end{array}\right\}$ to be the number of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type
$(\alpha, \beta ; \gamma, \delta ; \kappa)$.
Then we have the following recurrence relations:

Recurrence Relations

Define $\left\{\begin{array}{c}\alpha, \beta \\ \gamma, \delta, \kappa\end{array}\right\}$ to be the number of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$.

Then we have the following recurrence relations:

Recurrence Relations, [13]

Theorem

$$
\left\{\begin{array}{c}
\alpha, \beta \\
\gamma, \delta, \kappa
\end{array}\right\}=2^{\beta-\gamma-\delta+\kappa}\left\{\begin{array}{c}
\alpha-1, \beta \\
\gamma-1, \delta, \kappa-1
\end{array}\right\}+2^{\delta+\kappa}\left\{\begin{array}{c}
\alpha-1, \beta \\
\gamma, \delta, \kappa
\end{array}\right\}
$$

Theorem

Recurrence Relations, [13]

Theorem

$$
\left\{\begin{array}{c}
\alpha, \beta \\
\gamma, \delta, \kappa
\end{array}\right\}=2^{\beta-\gamma-\delta+\kappa}\left\{\begin{array}{c}
\alpha-1, \beta \\
\gamma-1, \delta, \kappa-1
\end{array}\right\}+2^{\delta+\kappa}\left\{\begin{array}{c}
\alpha-1, \beta \\
\gamma, \delta, \kappa
\end{array}\right\} .
$$

Theorem

$$
\left\{\begin{array}{c}
\alpha, \beta \\
\gamma, \delta, \kappa
\end{array}\right\}=2^{\alpha+\beta-\gamma-\delta}\left\{\begin{array}{c}
\alpha-1, \beta \\
\gamma-1, \delta, \kappa-1
\end{array}\right\}+2^{\delta}\left\{\begin{array}{c}
\alpha-1, \beta \\
\gamma, \delta, \kappa
\end{array}\right\} .
$$

Corollary ([13], Dougherty and Saltürk)

The number of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type ($\alpha, \beta ; \gamma, \delta ; \kappa$) is equal to the number of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type $(\alpha, \beta ; \alpha+\gamma-2 \kappa, \beta-\gamma-\delta+\kappa ; \alpha-\kappa)$.

Example

Since the number of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type $(2,2 ; 2,0 ; 1)$ is 18 from the previous example, we consider codes of type $(2,2 ; 2,1 ; 1)$ where $\bar{\gamma}=2+2-2=2, \bar{\delta}=2-2-0+1=1, \bar{\kappa}=2-1=1$.
The parameters above are the parameters of the dual codes.
Then we have the number of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type $(2,2 ; 2,1 ; 1)$ from
the formula which is the same as the number of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type (2, 2; 2, 0; 1).

Example

Since the number of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type $(2,2 ; 2,0 ; 1)$ is 18 from the previous example, we consider codes of type $(2,2 ; 2,1 ; 1)$ where $\bar{\gamma}=2+2-2=2, \bar{\delta}=2-2-0+1=1, \bar{\kappa}=2-1=1$. The parameters above are the parameters of the dual codes.
Then we have the number of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type $(2,2 ; 2,1 ; 1)$ from the formula which is the same as the number of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type (2,2;2, 0; 1).

Example

Since the number of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type $(2,2 ; 2,0 ; 1)$ is 18 from the previous example, we consider codes of type $(2,2 ; 2,1 ; 1)$ where $\bar{\gamma}=2+2-2=2, \bar{\delta}=2-2-0+1=1, \bar{\kappa}=2-1=1$.
The parameters above are the parameters of the dual codes. Then we have the number of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type $(2,2 ; 2,1 ; 1)$ from the formula which is the same as the number of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type $(2,2 ; 2,0 ; 1)$.

Decomposable codes

Lemma ([13], Dougherty and Saltürk)

A decomposable $\mathbb{Z}_{2} \mathbb{Z}_{4}$ code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ is the direct product of a binary code of dimension κ in an α dimensional space and a quaternary code in \mathbb{Z}_{4}^{β} of quaternary type $(\delta, \gamma-\kappa)$.

Lemma ([13], Dougherty and Saltürk)
The number of decomposable codes of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ is

Decomposable codes

Lemma ([13], Dougherty and Saltürk)

A decomposable $\mathbb{Z}_{2} \mathbb{Z}_{4}$ code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ is the direct product of a binary code of dimension κ in an α dimensional space and a quaternary code in \mathbb{Z}_{4}^{β} of quaternary type $(\delta, \gamma-\kappa)$.

Lemma ([13], Dougherty and Saltürk)

The number of decomposable codes of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ is

$$
\left(\left[\begin{array}{c}
\alpha \\
\kappa
\end{array}\right]_{2}\right)\left(\frac{2^{\beta k_{0}} \prod_{a=0}^{1} \prod_{i=0}^{k_{a}-1}\left(2^{k_{0}^{2}}+22_{0} 2^{\sum_{0}} \prod_{i=0}^{a-1} \prod_{i=0}^{1}\left(2^{k_{i}}-1\right)\left(2^{k_{i}}-2\right) \ldots\left(2^{k_{i}}-2^{k_{i}-1}\right)\right.}{)},\right.
$$

where $k_{0}=\delta, k_{1}=\gamma-\kappa$.

Indecomposable codes

Theorem ([13], Dougherty and Saltürk)

The number of indecomposable codes of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ is

$$
\begin{aligned}
& 2^{(\alpha+\beta-2 \gamma-\delta) \delta+\beta \kappa}\left[\begin{array}{l}
\beta \\
\delta
\end{array}\right]_{2}\left[\begin{array}{l}
\alpha \\
\kappa
\end{array}\right]_{2}\left[\begin{array}{l}
\beta-\delta \\
\gamma-\kappa
\end{array}\right]_{2} \\
- & \left(\left[\begin{array}{l}
\alpha \\
\kappa
\end{array}\right]_{2}\right)\left(\frac{2^{\beta k_{0}} \prod_{a=0}^{1} \prod_{i=0}^{k_{a}-1}\left(2^{\beta}-2^{\sum_{b=0}^{a-1} k_{b}} 2^{i}\right)}{2^{k_{0}^{2}+2 k_{0} k_{1}} \prod_{i=0}^{1}\left(2^{k_{i}}-1\right)\left(2^{k_{i}}-2\right) \ldots\left(2^{k_{i}}-2^{k_{i}-1}\right)}\right),
\end{aligned}
$$

where $k_{0}=\delta, k_{1}=\gamma-\kappa$.

Example

The number of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ codes of type $(2,2 ; 2,0 ; 1)$ is 18 . The number of decomposable codes of type $(2,2 ; 2,0 ; 1)$ is 9 . Because the number of binary codes of dimension $\kappa=1$ is $\left[\begin{array}{l}\alpha \\ \kappa\end{array}\right]_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right]_{2}=3$, and the number of quaternary codes in \mathbb{Z}_{4}^{2} of quaternary type $(\delta, \gamma-\kappa)=(0,1)$ is 3 . Then the product, $3 \times 3=9$, gives the number of decomposable codes.

Example (cont. example)

These codes are generated by the following matrices:

$$
\frac{\left(\begin{array}{ll|ll}
1 & X & 0 & 0 \\
0 & 0 & Y & 2
\end{array}\right)}{\left(\begin{array}{ll|ll}
0 & 1 & 0 & 0 \\
0 & 0 & Y & 2
\end{array}\right),}, \frac{\left(\begin{array}{ll|ll}
1 & X & 0 & 0 \\
0 & 0 & 2 & 0
\end{array}\right)}{\left(\begin{array}{ll|ll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0
\end{array}\right)}
$$

where $X \in\{0,1\}$ and $Y \in\{0,2\}$.
The remaining 9 codes are indecomposable ones.

Summary

- We count the number of additive codes of any types.

For Further Reading I

S. Delsarte.

An algebraic approach to the association schemes of coding theory.
Philips Res. Rep. Suppl., 49, vol. 10, 1973.
围 S. Delsarte, V. Levenshtein.
Association schemes and coding theory.
EEE Trans. Inform. Theory, vol. 44(6):2477-2504, 1998.
J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifà, M. Villanueva.

On $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes and duality.
V Jornades de Matemàtica Discreta i Algorísmica, Soria (Spain),
Jul. 11-14, pp. 171-177, 2006.

For Further Reading II

嗇 J．Borges，C．Fernández－Córdoba，J．Pujol，J．Rifà，M．Villanueva．
On $\mathbb{Z}_{2} \mathbb{Z}_{4}$－linear codes：generator matrices and duality． Designs，Codes and Cryptography，vol 54（2）：167－179， 2010.
击 M．Bilal，J．Borges，S．T．Dougherty，C．Fernández－Córdoba． Maximum distance separable codes over \mathbb{Z}_{4} and $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ ． Des．Codes Cryptogr．61（1）：31－40， 2011.

目 J．Borges，S．T．Dougherty，C．Fernández－Córdoba．
Self－Dual codes over $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ ．
to appear in Advances in Mathematics of Communication．

For Further Reading III

S. Delsarte.

Fonctions de Möbius Sur les Groups Abeliens Finis.
Annals of Math, 49, No.3:600-609, 1948.
睩 P.E. Djubjuk.
On the number of subgroups of a finite abelian group.
Izv. Akad. Nauk SSSR Ser. Mat, 12:351-378, 1948.
T. Honold, E. Landjev.

Linear codes over finite chain rings.
The Electronic Journal of Combinatorics, 7, 2000.
E. G. Calugareanu.

The total number of subgroups of a finite Abelian group. Scientiae Mathematicae Japonicae, vol. 60(1):157-167,2004.

For Further Reading IV

S.T. Dougherty, E. Saltürk.

Counting Codes Over Rings.
Des. Codes Cryptogr., vol. 67(3):293-402,2013.
\& F.J. MacWilliams, N.J.A Sloane.
The Theory Of Error Correcting Codes.
North-Holland Pub. Co., 1977.
五
S.T. Dougherty, E. Saltürk.

Counting Additive $\mathbb{Z}_{2} \mathbb{Z}_{4}$ Codes.
Applicable Algebra in Engineering, Communication and Computing, submitted.

For Further Reading V

Z.X. Wan.

Quaternary Codes. World Scientific, 1997.

Regards

Thank you for your attention... ©

[^0]: Theorem

